Education	University of Illinois at Urbana-Champaign , Urbana, Il Ph.D., Aerospace Engineering Concentration: Computational Science and Engineering	L 2018–Dec 2022 (exp) GPA: 3.96/4.0	
	University of Illinois at Urbana-Champaign , Urbana, Il M.S., Aerospace Engineering	L 2016–2018 GPA: 4.0/4.0	
	Indian Institute of Technology Gandhinagar, Gujarat, B.Tech. (<i>Honors</i>), Mechanical Engineering	India 2012–2016 GPA: 9.24/10.0	
Interests	 Computational fluid dynamics Numerical modeling High performance computing Deep learning Reinforcement learning Reduced-order modeling 	g	
Experience	 University of Illinois at Urbana-Champaign Graduate Research Assistant Ph.D. thesis adviser: Prof. Andres Goza Project: Computational fluid dynamics (CFD) of an aeroela Computationally modeled the multi-physics flow over an bio_inspired aeroelastic flap for improving aerodynamic 	n airfoil mounted with a	
	 bio-inspired aeroelastic flap for improving aerodynamic performance. Performed a multi-dimensional parametric study, k-means clustering and detailed data analysis to identify features that enhanced aerodynamic lift up to 27%. 		
	 Collaborated with a research group at Princeton University to correlate CFD simulations with wind-tunnel experiments. 		
	 Project: Machine learning for state estimation and active flow control Developed a nonlinear state estimation approach where real-time sensor data was used to accurately predict the full-flow state using deep neural networks. 		
	• Currently using deep reinforcement learning for designing a closed-loop controller for active flow control of an airfoil mounted with a controllable aeroelastic flap.		
	• Utilized methodologies such as proximal policy optimization, principal component analysis and multi-layer perceptrons on PyTorch.		
	 Project: High performance computing and development of efficient algorithms Developed a scalable multi-physics (fluid-structure interaction) solver involving the Navier-Stokes and Newton's equations using PETSC and MPI. 		
	• Designed an efficient algorithm that addressed a critical computational bottleneck related to the computation of a fluid-structure coupling matrix.		
	• Achieved 4–10x increase in serial computational speed a scaling efficiency.	nd $\sim 84\%$ parallel strong	
	 Sandia National Laboratories Computer Science Research Institute Summer Intern Adviser: Dr. Kevin Carlberg Project: Transfer learning for enabling convergence of reduction Formulated an adaptive refinement strategy to guarantee 		
	ear ROMs built using deep convolutional autoencoders on TensorFlow.		

• Developed methodologies for efficiently retraining selected weights of the autoencoder and real-time augmentation of the latent space.

University of Illinois at Urbana-Champaign

Urbana, IL Aug 2016-Aug 2018

Graduate Research Assistant

M.S. thesis adviser: Dr. Maciej Balajewicz

Project: Data-driven reduced-order modeling of fluid flows

- Identified a critical drawback of linear ROMs in accurately predicting fluid flows that are dominated by advection and strong discontinuities.
- Developed a hyper-reduced, physics-based ROM where solutions are obtained by a nonlinear transformation of a linear subspace using collected flow data.
- Achieved 300–10000x increase in computational speed while incurring only $\sim 1\%$ error when tested on several CFD problems.

California Institute of Technology

Pasadena, CA May-July 2015

May 2014–April 2015

India

Summer Undergraduate Research Fellow **Project:** Thermoelectric generators for waste heat scavenging in aircraft

- Designed and fabricated a thermal-electrical prototype consisting of a thermoelectric generator, heat fin and electronics to generate electricity from waste heat.
- Powered a wireless temperature sensor from a temperature difference of 5° K.

IIT Gandhinagar

Summer Research Intern

Project: Stability analysis of thermal boundary layers

• Performed local stability analysis to quantify the effect of heating on viscosity and the stability characteristics of axisymmetric thermal boundary layers.

Publications 1. N.J. Nair and A. Goza. Fluid-structure interaction of a bio-inspired passively deployable flap for lift enhancement. *Physical Review Fluids* (accepted).

- 2. N.J. Nair and A. Goza. A strongly coupled immersed boundary method for fluid-structure interaction that mimics the efficiency of stationary body methods. Journal of Computational Physics, 110897, 2022.
- 3. N.J. Nair, Z. Flynn and A. Goza. Numerical study of multiple bio-inspired torsionally hinged flaps for passive flow control. Fluids, 7(2), 44, 2022.
- 4. N.J. Nair and A. Goza. Leveraging reduced-order models for state estimation using deep learning. Journal of Fluid Mechanics, 897, 2020.
- 5. N.J. Nair and M. Balajewicz. Transported snapshot model order reduction approach for parametric, steady-state fluid flows containing parameter-dependent shocks. International Journal for Numerical Methods in Engineering, 2019; 117:1234-1262.

Conference	Invited
Talks and	1. N.J. Nair and A. Goza. Active flow control of a covert-inspired deployable flap
Proceedings	strategy using reinforcement learning. USNC, TAM, 2022. (Accepted).
	2. A. Goza and N.J. Nair. Effects of flap-vortex interactions on the lift of an airfoil
	mounted with a passively deployable flap. <i>DisCoVor</i> , <i>EPFL</i> , 2022. (Accepted).

3. N.J. Nair and M. Balajewicz. Transported snapshot model order reduction approach for parametric, steady-state fluid flows containing parameter dependent shocks. SIAM CSE, 2019.

Contributed

	1. A.K. Othman, N.J. Nair , A. Sandeep, A. Goza and A.Wissa experimental study of a covert-inspired passively deployable flap lift enhancement. <i>AIAA Aviation</i> , 2022. (Accepted)			
	2. N.J. Nair and A. Goza. Effects of Torsional Stiffness and Inert Deployable Flap for Aerodynamic Lift Enhancement. <i>AIAA Scit</i>	*		
	3. N.J. Nair and A. Goza. Approaching the efficiency of stational in a strongly coupled immersed boundary framework for fluid-s tion. <i>APS</i> , <i>Division of Fluid Dynamics</i> , 2021.			
	 N.J. Nair and A. Goza. Numerical study of a passively de aerodynamic flow control. APS, Division of Fluid Dynamics, 20 	- • -		
	5. N.J. Nair and A. Goza. Integrating sensor data into reduced-order models with deep learning. <i>APS</i> , <i>Division of Fluid Dynamics</i> , 2019.			
	6. N.J. Nair and M. Balajewicz. Physics based interpolation for s partial differential equations. <i>APS, Division of Fluid Dynamics</i>	• -		
	 N.J. Nair and U. Shah. A simple computational tool for studyin in nonlinear medium. ASME, IDETC, 2017. 	ng acoustic waves		
	8. N.J. Nair and V. Narayanan. Effect of viscosity stratification axisymmetric boundary layer. <i>APS</i> , <i>Division of Fluid Dynamic</i>	•		
Honors &	Kuck Computational Science and Engineering Scholarship, UIUC	2022		
Awards	AE Outstanding Graduate Student Fellowship, UIUC	2020		
	Conference Grant, APS DFD	2019		
	SIAM Conference Student Award, SIAM CSE	2019		
	Conference Award for Graduate Students, UIUC	2017		
	MSNDC Conference Student Grant, ASME IDETC	2017		
	Commencement award for 'Best Performance in the core subjects of En ics, Manufacturing and Workshop Practice', IIT Gandhinagar	gineering Graph- 2016		
	Summer Undergraduate Research Fellowship, Caltech	2015		
	Dean's List, IIT Gandhinagar	2013, 2014, 2015		
	Merit cum Means Scholarship, IIT Gandhinagar	2012, 2013, 2014		
	Winner of Ricoh Printer Design Challenge, IIT Gandhinagar	2014		
Selected Projects	 Aeroacoustics of vortex shedding around a stalled airfoil, UIUC Spring 2021 Predicted noise due to vortex shedding around an airfoil by numerically solving the Ffowcs Williams-Hawkings equation using the Farassat Formulation 1A. 			
	 Nonlinear modal decomposition of transient fluid flows, UIU Developed a nonlinear modal decomposition framework to ide flow structures in transient fluid flows using deep convolutional 	entify meaningful		
	 Commercial software for computational fluid dynamics Performed CFD simulations on Ansys Fluent to study passive from vortex generators on an Onera M6 wing at UIUC in Fall 2016. 	low control using		

• Simulated non-Newtonian blood flow in an artery using Star CCM+ to study the effect of blockages on blood pressure at IIT Gandhinagar in Spring 2016.

Skills	 Programming: Python, MATLAB, Fortran, C. Machine Learning: PyTorch, TensorFlow, Stable Baselines. High Performance Computing: PETSC, MPI, OpenMP. CFD and CAD: Ansys Fluent, Star CCM+, Autodesk Inventor. Miscellaneous: Git (Version Control), Simulink, Latex. 		
Leadership	University of Illinois at Urbana-Champaign Urbana, IL Coordinator, Upward Bound June–July 2021 • Designed and co-organized a two-day glider building workshop for high school students from underrepresented and minority groups. • Facilitated the procurement of supplies required for the activity and led one of the online Zoom sessions to guide the students through the workshop.		
	 Teaching Assistant Fall 2019, Fall 2020 Led regular office hours, exam revision sessions and created tutorial problems to aid the students in the AE433: Aerospace Propulsion course. Listed in the "List of Teachers Ranked as Excellent for Fall 2019". 		
	 Mentor As a senior graduate student, mentored newly admitted graduate students on the software architecture of our group. Mentored and supervised an undergraduate student on their research project on numerical modeling and CFD in summer 2017. 		
	 IIT Gandhinagar India Events Coordinator, Amalthea' 13 May–Oct 2013 Led a team of 21 students to plan and organize various technical events at Amalthea'13, the annual technical summit of IIT Gandhinagar. 		
	College Soccer Player2013–2015• Member of the IIT Gandhinagar soccer team and participated at two annual Inter-IIT tournaments.2013–2015		
	• Captain of one of the five teams in an intra-college soccer league.		
	 Undergraduate Lead Teaching Assistant Fall 2013 Designed and led the lab sessions on using Autodesk Inventor in the Engineering Graphics course for freshman students. 		